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Dynamical mechanisms of dc current generation in driven Hamiltonian systems

S. Denisov and S. Flach
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 25 July 2001; published 30 October 2001!

Recent symmetry considerations@Flachet al., Phys. Rev. Lett.84, 2358~2000!# have shown that dc currents
may be generated in the stochastic layer of a system describing the motion of a particle in a one-dimensional
potential in the presence of an ac time-periodic drive. In this paper we explain the dynamical origin of this
current. We show that the dc current is induced by the presence and desymmetrization of ballistic channels
inside the stochastic layer. The existence of these channels is due to resonance islands with nonzero winding
numbers. The characterization of the flight dynamics inside ballistic channels is described by distribution
functions. We obtain these distribution functions numerically and find very good agreement with simulation
data.
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Transport in driven systems has received widespread
terest for several years because of its potential applicab
to nonequilibrium processes@1#. One canonical model re
duces to the motion of a particle in a one-dimensional spa
periodic potential in the presence of friction and a tim
dependent stochastic forcex(t). If x(t) contains
correlations, a nonzero current may be realized even in
case of zero averagêx(t)&50 @1#. Despite an enormou
accumulation of results in this area@2# we are still lacking a
full understanding of themicroscopicmechanisms of curren
occurrence. If such an understanding is realizable, it sho
make use of the true dynamical evolution of the syst
rather than of properties of equations for probabilities. A fi
step in this direction requires separation of the essential t
correlations from the pure Gaussian white noise inx(t). The
simplest way is to assume thatx(t)5E(t)1j(t) where
E(t)5E(t1T) is a time-periodic function with zero mea
^E(t)&50 andj(t) is a Gaussian white noise term.

The next step is to skip thej(t) term which leaves us with
a regular dynamical problem. In@3# such a case was consid
ered and the relevant space-time symmetries of the dyn
cal problem were obtained. It was shown that a breaking
those symmetries leads to a nonzero dc current. The me
nism of current occurrence for the dissipative case was id
tified with a desymmetrization of attractor basins. In co
trast, the nondissipative~Hamiltonian! case is much less we
understood@4#. A time-dependent Hamiltonian system
usually nonintegrable@5#. A strong dc current componen
was found in the corresponding stochastic layer of suc
system@3#. While its presence or absence was clearly c
nected to the above mentioned absence or presence of
metries, the dynamical nature of directed transport in
stochastic layer is not fully understood. The importance
this understanding can be seen from, e.g., the results in@6#,
where kinetic equations for probability functions were stu
ied. In particular, it was found that the approaching of t
Hamiltonian~dissipationless! limit leads to an increase of th
dc current value by 2–3 orders of magnitude. Thus the
scription of the dynamical mechanisms of directed curr
generation in the stochastic layer of a driven Hamilton
system will provide very useful information for dissipativ
systems as well.
1063-651X/2001/64~5!/056236~4!/$20.00 64 0562
n-
ty

e-
-

e

ld

t
e

i-
f
a-

n-
-

a
-
m-
e
f

-

e-
t

n

Let us consider the canonical example of a particle m
ing in a spatially periodic nonlinear potentialU(x)5
2cosx under the influence of a time-periodic zero-me
force E(t). The Hamiltonian and the equation of motion a
given by

H5
p2

2
2cosx2xE~ t !, ẍ52sinx1E~ t !. ~1!

Herep andx are the canonically conjugated momentum a
coordinate andẍ[d2x/dt2.

We restrict our consideration to the choice

E~ t !5E1 cos~ t !1E2 cos~2t1f!. ~2!

According to@3# for E2Þ0 andfÞ0,p all possible symme-
tries that yield zero dc current are broken. Note that
phase space dimensiond of Eq. ~1! is d53.

In the case of a nonzero fieldE(t) the phase space of Eq
~1! is characterized by the presence of a stochastic la
which originates from the destroyed separatrix of the u
driven system@5#. For f50,p this layer is invariant under
the transformation (p→2p,t→2t,x→x). At the same time
the average velocity for any trajectory in this layer vanish
so we find zero dc current. The symmetry will be brok
when tuningf away from the values (0,p). The stochastic
layer will deform. Most importantly any trajectory in th
layer will then be characterized by a nonzero value of
average velocity. Due to ergodicity inside the layer this va
will be unique for all trajectories from the layer. While th
fact that it may become nonzero is understandable us
symmetry analysis, its appearance and magnitude are du
dynamical mechanisms of motion inside the stochastic la
In this paper, we show that the dc current is induced by
presence and desymmetrization of ballistic channels ins
the stochastic layer. The existence of these channels is d
resonances. The characterization of the realization of flig
inside ballistic channels is described by distribution fun
tions. We obtain these distribution functions numerically a
find very good agreement with simulation data.

System~1! has a mixed phase space, which contains c
otic areas and regular resonance islands@7#. These islands
©2001 The American Physical Society36-1
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are impermeable for chaotic trajectories and, at a first gla
may be excluded from the consideration of the phase sp
flow inside the stochastic layer. In reality the phase sp
topology inside the stochastic layer is very complex p
cisely at the boundary between chaotic and regular reg
@7#. Close to resonances the stochastic layer shows a hi
chical set of cantori, which form partial barriers for a traje
tory from the layer. Due to the presence of these barrie
chaotic trajectory can be trapped for a long time near a re
lar island resonance. This trapping or sticking effect lead
the appearance of strongly nonergodic episodes during
overall chaotic motion. Regular islands are characterized
a corresponding rational winding numberv5Dx/T which
defines the distanceDx traveled during one periodT52p of
the drive. If the winding numberv is nonzero, the corre
sponding sticking episode of the chaotic trajectory is a b
listiclike unidirectional flight. Forv50 the sticking episode
corresponds to trapped oscillations.

Thus the complicated evolution of a trajectory in the s
chastic layer can be subdivided into several parts@7#. The
first one is a fast diffusion in the bulk of the layer, while th
other ones are stickings to the above mentioned regula
lands and correspond to propagation in ballistic chann
The switching from the diffusion process to a ballistic flig
will be described by some probability distribution. The sam
will be true for the actual residence or sticking time inside
given channel. We will show for the cases studied that
fast diffusion alone is not capable of explaining the obser
dc current. The main point is that the leading mechanism
current generation in thestochastic layeris related to the
desymmetrization of the stronglynonstochasticpart of the
overall stochastic dynamics inside the layer. Note that
kinetic energy choicep2/2 in Eq.~1! implies that the stochas
tic layer is bounded inp, so we will always expect ballistic
channels to appear.

Let us study the case of weak drivingE150.252 andE2
50.052. A Poincare´ map of the phase space flow forf50 is
shown in Fig. 1~a! @8#. The main stochastic layer~central
location! shows up with zero average velocity due to sy

FIG. 1. Poincare´ map for ~a! f50 and~b! f5p/2.
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metry arguments~Fig. 2!. The large hole in the middle of this
layer corresponds to regular trapped motion in the well
U(x). Additional resonances are seen above and below
central layer. These thin ballisticlike but yet stochastic ch
nels have no overlap with the central layer.

A weak asymmetryf5p/5 leads to a slight deformation
of the main stochastic layer and to a desymmetrization of
overlap of the chaotic layer with higher-order resonances
to the appearance of a positive current in the system. N
that it still does not overlap with the thin ballistic channe
seen in Fig. 1~a!. Most importantly, we observe a nonze
average velocitŷ ẋ&'0.05 ~Fig. 2!.

Further increase of the asymmetry,f5p/2, results in an
overlapping of the main stochastic layer with the upper b
listic resonance Fig. 1~b!. Note that at the same time th
lower ballistic resonance is not overlapping. The average
locity increases tô ẋ&'0.2, which is four times larger than
the result forf5p/5. Standard harmonic mixing theorie
~see@2,9#! would predict a dependence^ẋ&;sinf and thus
an increase by a factor of only 1.7.

In the x(t) curves in Fig. 2 we observe many ballist
flights. For one of them an inset shows the correspond
Poincare´ map result, which verifies that these flights corr
spond to stickings of the chaotic trajectory to the upper b
istic resonances. A zooming of thex(t) curves showsself-
similarity, i.e., the seemingly random dynamics betwe
observable long flights is actually again composed of sho
flights and seemingly random dynamics, etc.~see the insets
in Fig. 2!.

In order to quantify our analysis of the symmetry brok
dynamics we compute the distribution of traveling times
‘‘uniform’’ flights to the left P2(t f) and to the rightP1(t f)
separately. Here, ‘‘uniform’’ means no change of directi
of motion @10#. For each separate flight we note both t
time t f spent in this motion and the distancexf traveled. Note

FIG. 2. x(t) for f50,p/5,p/2 ~lower, middle, and upper
curves, respectively!. Left upper inset: Poincare´ map for ballistic
flight with f5p/2 as indicated by arrow. Right inset: enlargeme
of x(t) for f5p/2.
6-2
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that such a definition of flights has to be imrpoved if ma
resonances are involved and especially if ballistic resonan
contribute, which are characterized by nonuniform motio

The dependence ofxf on t f is shown in the inset of Fig
3~a! for f5p/2. As in the other casesf50,p/5 we observe
a simple forklike structure. This is due to the fact that a
considerable distance covered in the stochastic layer is
ized through flights while sticking to the boundary of th
stochastic layer. The slopes in the inset of Fig. 3~a! are given
by the corresponding winding numbers of the layer bou
aries. Note that the two fork parts merge at values oft f
'10T. In principle other ballistic channels with differen
winding numbers might be present. Here they were too w
to be detected.

In Fig. 3~a! we show the corresponding distribution fun
tions P6(t f) ~again for f5p/2). They are obtained by
counting the number of flights witht f falling into a time
window of sizeT. For t f,10T we observe exponential de
pendence ofP6 on t f . These short flight distributions are i
fact independent of the direction of flight. Skipping a
longer flights would lead to the prediction of nearly ze
average velocity~restricting consideration to flights of lengt
t f,10T yields about 1% of the numerically observed cu
rent!. Thus the desymmetrization will manifest itself fo
longer flights. Fort f.10T a crossover to a power lawP6

;t f
a6 takes place. Here we find a significant desymmetri

tion for f5p/5,p/2. Estimating the exponents@11# we find,
for f5p/5, a2'2.5, a1'2.4, and forf5p/2, a2'3.7,
a1'2.3. It is worthwhile noting thata,3 implies unidirec-
tional anomalous diffusion with diverging second mome
of P(t). The flights are termedLevy flightsin such a case
@12#.

Following the continuous-time random walk~CTRW! for-
malism @13# we propose a generalized asymmetrical flig
model capable of reproducing the above results. The ap
cability of the CTRW model follows from the assumptio
that the presence of a random phase with fast decaying
relations leads to the absence of correlations between

FIG. 3. P1(t f) ~solid line! and P2(t f) ~thick dashed line!. In-
sets:xf versust f . For parameters see text.
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secutive flights, since they are almost always separated
dispersive chaotic motion.

Assume that there existN different resonances with wind
ing numberswi , i 51, . . . ,N. Every resonance is characte
ized by a probability distribution function~PDF! of sticking
timesSi(t). After finishing a random phase event, the pro
ability of sticking to thei th resonance isr i , ( i 51

N r i51. The
random phase residing time is characterized by a PDFSr(t).
All functions Si(t) andSr(t) must have finite first moments
due to the Kac theorem about finiteness of recurrence ti
in Hamiltonian systems@7#. With these definitions we obtain
the following expression for the current:

J5

(
i 51

N

v ir i^t i&

(
i 51

N

r i^t i&1^t r&

, ~3!

where^t i&5* tPi(t)dt.
For the above discussed cases off5p/5,p/2 we find

only two relevant ballistic channels—one with positiv
winding number and a second one with negative wind
number. In order to properly obtainS(t), we note that our
numerically obtained functionP(t) consists of a lot of short
‘‘flights’’ as defined through the numerics@10#. These may
be either stickings to islands with zero winding number
chaotic motion. We observe that for flight timest f.10T
only ballistic flights with nonzero winding number are o
tained. So the functionsS6(t) may be easily obtained from
P6(t f) by cutting out the central partt,10T and properly
normalizing. In this case the expression for the average
rent simplifies to

J5
1

k~11 f !
~v1^t1&1 f v2^t2&!, ~4!

where the two constantsk and f can be obtained from the
total time of a simulationTtot and the numbersN6 of bal-
listic flights, k5Ttot /(N11N2) and f 5N2 /N1 .

For f5p/5 we obtain from the numerical runsf '0.57,
k'1900, ^t1&'^t2&'220, and v1510/6'1.67, v25
21.5. In this case ofweak desymmetrizationthe main source
of a nonzero current is the different probabilities of enteri
a right or left going flight becausef Þ1. At the same time the
average flight times in both ballistic channels are nea
identical. With the help of Eq.~4! we findJ'0.056 which is
close to the numerically observed value of 0.05.

For the casef5p/2 we find f '0.16, k'2600, ^t1&
'400, ^t2&'150, andv152, v2'21.4. Note that the
above discussed overlap with the upper resonance yiel
further strong desymmetrizationin the probabilities of real-
izing a left or right going flight, and in addition the averag
flight times in both channels significantly differ. Expressio
~4! yields J'0.22 which is in good agreement with the n
merically observed value of 0.2.

For stronger driving amplitudeE153.26, E251.2, and
f5p/2 we obtain an average velocity^ẋ&'0.85. The cor-
respondingxf(t f) dependence and the PDFsP6(t f) are
6-3
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shown in Fig. 3~b!. Thexf(t f) dependence shows that mo
than two ballistic channels are involved. The asymmetry
the PDFs at short flight times indicates that a considera
number of left going flights become dominant at short tim
in agreement with the tendency of the previous results. T
makes the application of the simplified sum rule~4! impos-
sible; instead the original definition~3! should be used. Care
ful analysis of the structure of the stochastic layer shows
relevant resonances become embedded in the bulk of
stochastic layer. While these structures are of rather sm
size, they are frequently visited. A restriction to short fligh
t f,10T now yields a considerable nonzero current, which
however,negative, i.e., opposite to the total current valu
Again the long ballistic flights are necessary in order to pr
erly obtain the observed current value.

The last example suggests that the applicability of Eq.~3!
is rather limited. While this is to some extent true consid
ing the practical side, it can of course be improved by us
refined definitions of ballistic flights. However, the most im
portant property of Eq.~3! is its validity in principle. It rep-
resents a dynamical approach to directed transport in dr
Hamiltonian systems. This approach states that transport
chaotic layer is realized through ballistic channels. This
been successfully tested for some cases@Fig. 3~a!# and we
conjecture that it has general validity.

In summary, we have explained the dynamical mec
nisms of current appearance in driven Hamiltonian syste
inside a stochastic layer with broken time reversal symme
The key source of such directed transport is the desymm
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zation of flight probabilities in ballistic channels inside th
layer. It follows from our sum rule~3! that the resulting
current depends among other parameters on the average
spent in a ballistic channel. These times will sensitively d
pend on control parameters of the system if the exponena
becomes less than 3. In such cases small changes may
nificantly alter the current value as shown above.

An important question is whether the analysis presente
robust with respect to weak damping~dissipation!. While a
complete analysis is beyond the scope of this work,
checked that the mechanisms of dc current generation sta
place. Ballistic resonances are replaced by attractors~typi-
cally limit cycles with nonzero winding numbers!. The cha-
otic layer of the Hamiltonian case is replaced by a comp
cated entanglement of basins of attraction of differe
attractors~see also@14#!.

A recently proposed geometric approach of counting
eas and winding numbers is in principle also capable of
taining the observed mean value for the current@15#. This
approach may also require sophisticated studies of the fra
structure of the chaotic layer. It represents a nontriv
complementary result, since, although not explaining the
namical mechanisms of current generation, it is capable
obtaining the average current value@provided the sums in
Eq. ~3! of @15# converge fast enough#.

We thank M. Fistul, A. A. Ovchinnikov, H. Schanz, O
Yevtushenko, and Y. Zolotaryuk for useful discussions.
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